National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Optical micromanipulation and Raman spectroscopy of cells in microfluidic systems
Klementová, Tereza ; Samek, Ota (referee) ; Mravec, Filip (advisor)
This diploma thesis deals with optimization of analysis process and measuring antibiotics induced changes in E. coli cells via Raman spectroscopy, LTRS and microfluidic systems. Optical micromanipulation by a laser beam allows noncontact and noninvasive manipulation of objects on scale 10^-5–10^-8 m, for example bacterial cells. Microfluidic device consists of microchannels and microchambers in transparent polymer and it is used for isolation, observation and cultivation of bacterial cells. Combination of these methods gives an effective tool for observation, manipulation and analysis of microorganisms. E. coli is a microorganism potentially pathogenic for humans and faster detection of its sensitivity to antibiotic treatment would make the whole process of diagnostics and treatment easier. We performed laser tweezer-Raman spectroscopy and conventional Raman spectroscopy of bacterial cells and cells under antibiotic stress and collected Raman spectra and characteristic areas were compared with literature to establish the reliability and usefulness of this method.
Optical micromanipulation and Raman spectroscopy of cells in microfluidic systems
Klementová, Tereza ; Samek, Ota (referee) ; Mravec, Filip (advisor)
This diploma thesis deals with optimization of analysis process and measuring antibiotics induced changes in E. coli cells via Raman spectroscopy, LTRS and microfluidic systems. Optical micromanipulation by a laser beam allows noncontact and noninvasive manipulation of objects on scale 10^-5–10^-8 m, for example bacterial cells. Microfluidic device consists of microchannels and microchambers in transparent polymer and it is used for isolation, observation and cultivation of bacterial cells. Combination of these methods gives an effective tool for observation, manipulation and analysis of microorganisms. E. coli is a microorganism potentially pathogenic for humans and faster detection of its sensitivity to antibiotic treatment would make the whole process of diagnostics and treatment easier. We performed laser tweezer-Raman spectroscopy and conventional Raman spectroscopy of bacterial cells and cells under antibiotic stress and collected Raman spectra and characteristic areas were compared with literature to establish the reliability and usefulness of this method.
From the mere pushing to sorting of microparticles and assembly of microrobots by light
Zemánek, Pavel ; Arzola, Alejandro V. ; Brzobohatý, Oto ; Chvátal, Lukáš ; Jákl, Petr ; Kaňka, Jan ; Karásek, Vítězslav ; Šerý, Mojmír ; Šiler, Martin
We demonstrate the recent progress in the field of optical micromanipulation. We start with the classical applications of solar sail propelled by the radiation pressure and approach the recent ones dealing with optical tractor beams, optical binding and sorting of microobjects. The pioneering attempts to assemble a microrobot by light is presented.
Classical and advanced methods of optical micromanipulations and their applications
Zemánek, Pavel ; Brzobohatý, Oto ; Šiler, Martin ; Karásek, Vítězslav ; Samek, Ota ; Jákl, Petr ; Šerý, Mojmír ; Ježek, Jan
Optical micro-manipulation techniques have been using for more than 30 years to transfer the momentum from light to microparticles or nanoparticles and influence their movement in liquid, on the surface, or in the air. These days such techniques become more developed and frequently used in physics, chemistry and biology to manipulate, trap, rotate, or sort various types of objects, including living cells in a contactless and gentle way.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.